Classical and Quantum Algorithms for Testing Equivalence of Group Extensions
نویسنده
چکیده
While efficient algorithms are known for solving many important problems related to groups, no efficient algorithm is known for determining whether two arbitrary groups are isomorphic. The particular case of 2-nilpotent groups, a special type of central extension, is widely believed to contain the essential hard cases. However, looking specifically at central extensions, the natural formulation of being “the same” is not isomorphism but rather “equivalence,” which requires an isomorphism to preserves the structure of the extension. In this paper, we show that equivalence of central extensions can be computed efficiently on a classical computer when the groups are small enough to be given by their multiplication tables. However, in the model of black box groups, which allows the groups to be much larger, we show that equivalence can be computed efficiently on a quantum computer but not a classical one (under common complexity assumptions). Our quantum algorithm demonstrates a new application of the hidden subgroup problem for general abelian groups.
منابع مشابه
Constacyclic Codes over Group Ring (Zq[v])/G
Recently, codes over some special finite rings especially chain rings have been studied. More recently, codes over finite non-chain rings have been also considered. Study on codes over such rings or rings in general is motivated by the existence of some special maps called Gray maps whose images give codes over fields. Quantum error-correcting (QEC) codes play a crucial role in protecting quantum ...
متن کاملHomotopy Theory of Hopf Galois Extensions
We introduce the concept of homotopy equivalence for Hopf Galois extensions and make a systematic study of it. As an application we determine all H-Galois extensions up to homotopy equivalence in the case when H is a Drinfeld-Jimbo quantum group.
متن کاملAn Efficient Quantum Algorithm for Some Instances of the Group Isomorphism Problem
In this paper we consider the problem of testing whether two finite groups are isomorphic. Whereas the case where both groups are abelian is well understood and can be solved efficiently, very little is known about the complexity of isomorphism testing for nonabelian groups. Le Gall has constructed an efficient classical algorithm for a class of groups corresponding to one of the most natural w...
متن کاملQuantum principal bundles up to homotopy equivalence
Hopf-Galois extensions are known to be the right generalizations of both Galois field extensions and principal G-bundles in the framework of non-commutative associative algebras. An abundant literature has been devoted to them by Hopf algebra specialists (see [Mg], [Sn1], [Sn2] and references therein). Recently there has been a surge of interest in Hopf-Galois extensions among mathematicians an...
متن کاملOne-point extensions of locally compact paracompact spaces
A space $Y$ is called an {em extension} of a space $X$, if $Y$ contains $X$ as a dense subspace. Two extensions of $X$ are said to be {em equivalent}, if there is a homeomorphism between them which fixes $X$ point-wise. For two (equivalence classes of) extensions $Y$ and $Y'$ of $X$ let $Yleq Y'$, if there is a continuous function of $Y'$ into $Y$ which fixes $X$ point-wise. An extension $Y$ ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013